

SmartFind M6 AIS CLASS A INSTALLATION MANUAL

General Information

Volume 2 of 2

INSTALLATION MANUAL, refer to the separate USER MANUAL for operational guidance.

i. Copyright

The entire contents of this instruction manual, including any future updates, revisions, and modifications, shall remain the property of Netwave Systems B.V. at all times. Unauthorized copies or reproduction of this manual, either in part or whole, in any form of print and electronic media, is prohibited. The contents herein can only be used for the intended purpose of this manual.

ii. Disclaimer

The information and illustrations contained in this publication are to the best of our knowledge correct at the time of going to print. We reserve the right to change specifications, equipment, installation and maintenance instructions without notice as part of our policy of continuous product development and improvement. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, electronic or otherwise without permission in writing from Netwave Systems B.V. No liability can be accepted for any inaccuracies or omissions in the publication, although every care has been taken to make it as complete and accurate as possible. This manual is applicable for McMurdo Smartfind M6 units manufactured after March 2024.

iii. Safety Warning

It is important to know that AIS is designed for the purpose of anticollision and serves as a complement to navigation. It is not the absolute navigational equipment and does not replace any navigational system installed on board.

Any AIS device cannot guarantee the monitoring and receiving of signals from all vessels in the surroundings.

ELECTRICAL SHOCK HAZARD

Improper disassemble or modification could cause electrical shocks, fire, or personal injury. Contains no user-serviceable parts. Only suitably qualified personnel should attempt repair of the equipment.

CORRECT POWER SOURCE

Incorrect power sources will damage the equipment and may even result in fire.

Please ensure the correct power source is provided at all times.

AVOID DIRECT CONTACT WITH RAIN OR SPLASHING WATER

Electrical shock or fire could be resulted if water leaks into the equipment.

RADIO LICENCE

The AIS transponder is a maritime radio transmitter. Some administrations may require that the user holds a valid radio license to cover its ownership and use.

RADIO FREQUENCY RADIATION HAZARD

The AIS transponder emits low levels of radio frequency radiation. It is the operator's responsibility to ensure that no personnel come within the Maximum Permissible Exposure (MPE) radius of 1.9 m from the antenna.

NOTE/INFORMATION

Throughout this manual this symbol indicates important information

iv. Product Category

This product is categorized as "protected" in accordance with the requirements as defined in IEC 60945.

v. Compass Safe Distance

Safe distance to the transponder (and junction box) unit is:

Standard-magnetic-compass: 0.30 m Steering-magnetic-compass: 0.30 m

vi. RF Exposure Safe Distance

The AIS transponder has been tested and meets applicable limits for radio frequency (RF) exposure. This device generates and radiates RF

electromagnetic energy and requires a Maximum Permissible Exposure (MPE) no entry zone for all personnel of 1.9 m radius around the antenna during its operation.

vii. Hardware / Software Version

The model name/number, hardware information, and firmware (software) version of the transponder can be identified through MKD at MENU/DIAGNOSTICS/VERSION. The software maintenance/upgrade of the transponder can be carried out on board via MicroSD card. The onboard documentation as described in the installation manual Appendix C can be used to assist reflecting software maintenance records.

viii. Type Approval

The AIS transponder complies with applicable international standards and is type approved in accordance with the European Marine Equipment Directive.

ix. Declaration of Conformity

Hereby, Netwave Systems B.V. declares that the McMurdo Smartfind M6 Class A AIS transponder is in compliance with the essential requirements and other relevant provisions of European MED Directive 2014/90/EU. A full list of applicable national type approvals and Declaration of Conformity(s) can be obtained on-line from:

https://www.seasofsolutions.com/products/?_sft_technology=ais-electronics

x. Disposal Instruction

The Waste Electrical and Electronic Equipment (WEEE) Directive aims to minimize any adverse impact of electronic equipment on the environment, both during the product lifetime and when it becomes waste. Within the European Union this legislation is mandated by Directive 2002/96/EC, and there is similar legislation in most other continents. The directive applies to all electronic products such as IT, household appliances, portable electronics etc., and imposes requirements to collect, treat, recover and recycle each product at its end of life. Do not dispose of this device with unsorted waste. Improper disposal may be harmful to the environment and human health.

Please refer to your local waste authority for information on return and collection systems in your area.

xi. IMO Green Passport Ship Recycling Information

Netwave Systems B.V. hereby declares potentially hazardous content in some of its electronic products. In keeping with European directive 2002/96/EC (Waste Electronic and Electrical Equipment) and the provisions of IMO Resolution A.962(23) (Guidelines On Ship Recycling), Netwave Systems B.V. strongly recommends that its products, including any battery packs, be disposed of in a considerate and legal manner.

xii. Maintenance and contact information

All servicing must be carried out by a Netwave Systems B.V. approved service agent. Always call your nearest agent and talk to their service department before returning equipment.

xiii. Product Warranty

As standard, your unit has a one year (12 months) warranty from the date of purchase shown on your invoice, however, this can be extended by a further one year by simply registering your unit on-line within 90 days of purchase at: https://www.seasofsolutions.com/contact-us/warranty-registration/

Warranty enquiries should be sent to:

Email: <u>info@seasofsolutions.com</u> Telephone: +44 (0) 239262 3900

Or by mail to:

Netwave Systems B.V.

Blauw-roodlaan 100, 2718 SJ Zoetermeer, Netherlands.

or

McMurdo Ltd

Holbrook Court, E1 Cumberland Business Centre,

Northumberland Road, Southsea, Hampshire, PO5 1DS, UK

TABLE OF CONTENTS

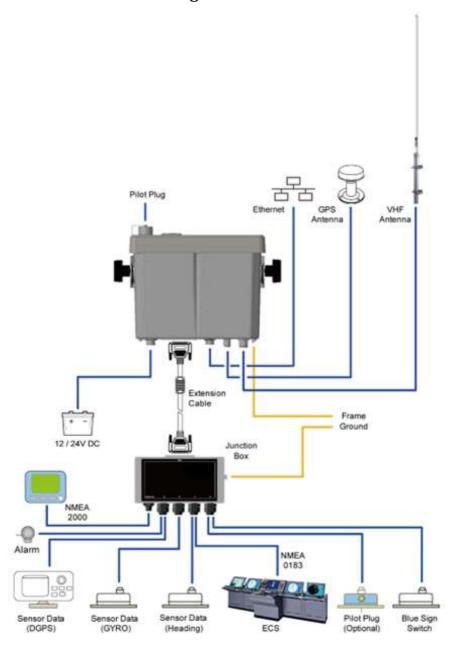
1	M6 S\	YSTEM OVERVIEW	5
	1.1	PRODUCT DESCRIPTION	5
	1.2	M6 Main Features	5
	1.3	INTERCONNECTION DIAGRAM	6
2	INSTA	ALLATION	7
	2.1	EQUIPMENT IN THE BOX	7
	2.2	Installation Procedures	8
	2.3	RF CABLE REQUIREMENTS	8
	2.4	VHF Antenna Installation	9
	2.5	GNSS (GPS) ANTENNA INSTALLATION	10
	2.6	Mounting M6	10
		2.6.1 Mounting M6 Transponder Main Unit	11
		2.6.2 Mounting Junction Box	13
	2.7	M6 External Connectors (Transponder Main Unit)	14
	2.8	External Connectors (Junction Box)	15
	2.9	CONNECTING EXTENSION CABLE	18
	2.10	CONNECTING TO POWER SUPPLY	19
	2.11	PILOT PLUG CONNECTION	19
	2.12	PASSWORD SETTING	20
3	PROD	OUCT SPECIFICATIONS	21
	3.1	Applicable Standards	21
	3.2	VHF Transceiver	21
	3.3	DSC Receiver	21
	3.4	GNSS RECEIVER (INTERNAL)	22
	3.5	Power Supply	22
	3.6	LCD DISPLAY	22
	3.7	KEYPAD	22
	3.8	CONNECTION INTERFACE	23
	3.9	Environmental	24
	3.10	PHYSICAL	24
	3.11	PILOT PLUG (OPTIONAL)	24
4	MECH	HANICAL DIMENSIONS	25

4.1	M6 Transponder Main Unit	25
4.2	JUNCTION BOX	27
4.3	EXTENSION CABLE	27
4.4	ETHERNET CABLE	27
4.5	MOUNTING TEMPLATE (NOT TO SCALE)	28
4.6	GNSS (GPS) ANTENNA GA-25	28
4.7	PILOT PLUG (OPTIONAL)	29
5 TRO	UBLESHOOTING	30
5.1	TROUBLESHOOTING WITH ALARM MESSAGES	31
APPENDI	X A: TECHNICAL INFORMATION - DATA INTERFACE	33
A.1	AIS Interface Overview	33
A.2	M6 DATA INTERFACE (IEC 61162-2)	34
A.3	SUPPORTED IEC 61162 DATA SENTENCES	36
A.4	INTERPRETATION OF INPUT SENTENCES	36
A.5	Interpretation of Output Sentences	51
APPENDI	X B: M6 NMEA 2000 PGN INFORMATION	58
APPENDI	X C: INSTALLATION AND MAINTENANCE RECORD	60
APPENDI	X D: USCG CHECK LIST & REPORT	62
6 DOC	UMENT REVISIONS	64

1 M6 SYSTEM OVERVIEW

1.1 Product Description

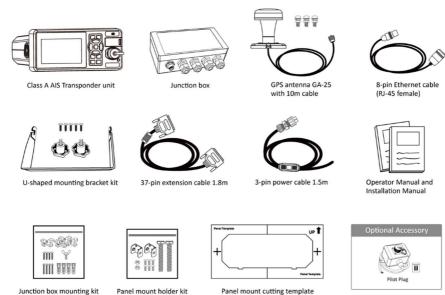
The **McMurdo SmartFind M6** is a new generation **AIS Class A transponder** fully compliance with IMO, IEC, and ITU international standards. It provides a compact single box solution, easy to install and operate. The product is designed with advanced technology which sets a new standard for quality, performance, and value. It is an excellent choice for SOLAS vessels, commercial ships, professional vessels, and non-SOLAS applications.


The M6 can be connected to the ship's sensors as required by the IALA guidelines through junction box. The device can also interface external navigation and presentation systems that support IEC 61162-1 related sentences. It is also capable for connection to Long Range systems like Inmarsat C. The M6 supports both SOLAS and Inland AIS mode which is configurable by the software.

The colour LCD display and menu keypads provide an intuitive graphical user-friendly interface to the system. It can display the location of other vessels, aids to navigation and search and rescue vessels. The AIS transmit and receive status are shown on the screen which helps user to know the working status of the unit easily. The LCD and keypad can also be used to send and receive messages, perform configuration as well as supervise the system status.

1.2 M6 Main Features

- Compact AIS Class A solution, easy to install and operate
- Fully compliant with IMO, IEC, and ITU international standards
- Color 4.3" LCD display with variant display modes
- User-friendly intuitive GUI & keypad operation
- IMO/Inland AIS mode selectable
- Compliance with CESNI Inland AIS test standard Ed. 2021/3.0
- Multiple sensor input ports and bi-directional data ports
- USB, NMEA 0183, NMEA 2000, Ethernet connectivity, and SD card for software upgrade
- Support type P of BAM function type


1.3 Interconnection Diagram

2 INSTALLATION

2.1 Equipment in the Box

The standard supply in the package includes the following items. Please contact your local representative if any item is missing.

2.2 Installation Procedures

Please familiarize yourself with the manual contents before beginning the installation. Use the following recommended steps for installation.

- 1) Mount the transponder unit to a desired location
- 2) Mount junction box
- 3) Install VHF antenna
- 4) Install GPS antenna
- 5) Connect all external sensors and data interfaces to the junction box
- 6) Connect all required cables to the main transponder unit
- 7) Power on the main transponder unit
- 8) Complete configuration setting
- 9) Perform system functional test

2.3 RF Cable Requirements

The following RF cables are recommended to install the M6.

VHF Antenna Cable

Type: RG214, 5D-FB or equivalent

Connector: PL-259 (Male)

GPS Antenna Cable

Type: RG58A/U or equivalent

Connector: TNC (Male)

Cable and connector are supplied as part of the GPS antenna.

2.4 VHF Antenna Installation

The quality and positioning of the antenna are the most important factors dictating AIS performance. It is recommended that a VHF antenna with omni directional vertical polarization be specifically tuned for AIS operation band. Since the range of VHF signals is largely decided by line of sight distance, the VHF antenna should be placed as high as possible and at least 5 meters away from any constructions made of conductive materials.

To avoid interference, the VHF antenna location should be placed accordingly as diagram below:

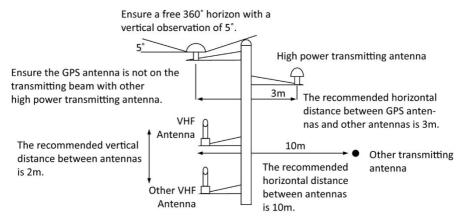


Figure 1 VHF/GPS Antenna Locations

2.5 GNSS (GPS) Antenna Installation

The GPS antenna must be installed where it has a clear view of the sky, so that it may access the horizon freely with 360 degrees, with a vertical observation of 5 to 90 degrees above the horizon.

GPS ANTENNA LOCATION

Enter the GPS antenna location data in "SHIP SETTING" after the installation.

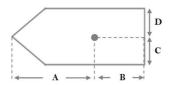


Figure 2 GPS Antenna location

2.6 Mounting M6 main unit

Use the following guidelines to check the installation location for your AIS transponder:

- The AIS transponder should be mounted in a location that is accessible and readable to user at all time.
- The transponder should be installed in a protected environment away from direct rain and water contact.
- The transponder is designed to operate in an environment with -25 °C ~ +55
 °C temperature. Environments with excessive heat may cause damages to the transponder.
- The transponder should not be installed near flammable or hazardous environments.
- The AIS transponder should be installed at least 0.5 m away from magnetic compasses.

2.6.1 Mounting M6 Transponder Main Unit

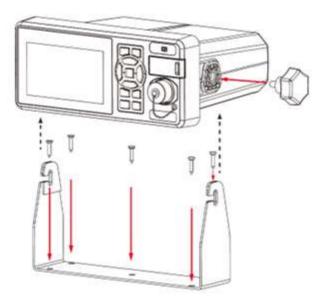


Figure 3 Mounting M6 Main Unit

Panel Mounting (1)

- 1. Line up the mounting template on control panel to sketch an outline for the cutting area.
- 2. Using a jigsaw carefully cut along the sketched cutting area.
- 3. If necessary, clean up edge with glass paper or file.
- 4. Mount the transponder through the opening.
- 5. From the rear, install the mounting brackets with the M3X6 screws.
- 6. Apply the mounting bracket screw (brackets are directional, ensure correct one is fitted to each side) on each side for a firm fix.

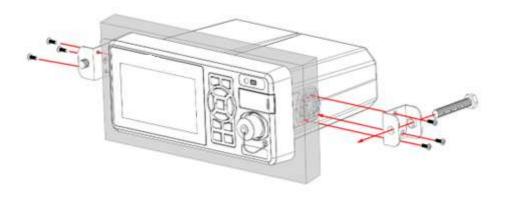


Figure 4 Panel Mounting (1)

Panel Mounting (2)

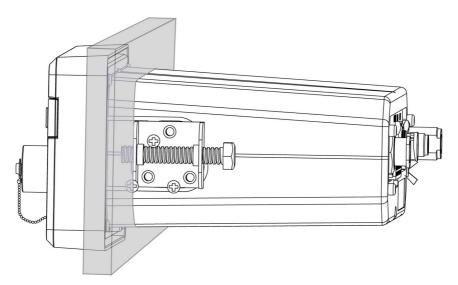


Figure 5 Panel Mounting (2)

2.6.2 Mounting Junction Box

Mounting Junction Box (1)

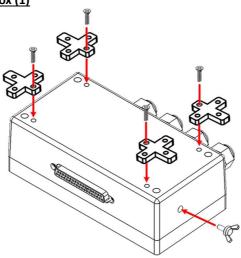


Figure 6 Mounting Junction Box (1)

Mounting Junction Box (2)

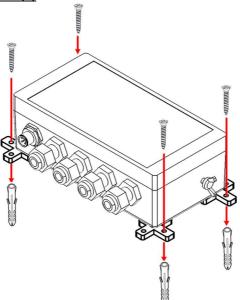


Figure 7 Mounting Junction Box (2)

2.7 M6 External Connectors (Transponder Main Unit)

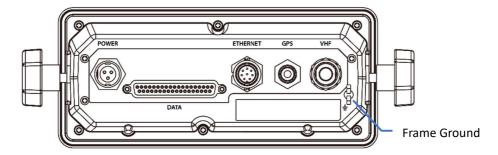


Figure 8 M6 Rear View

NAME	DESCRIPTION	ТҮРЕ
POWER	Power input connector	Round type, 3 pins
ETHERNET	10Base-T/ 100Base-TX	Round type, 8 pins
GPS	GPS antenna connector	TNC (female)
VHF	VHF antenna connector	SO-239 (female)
DATA	Connect to Junction Box/	D-Sub 37 pins
	Connect to sensor or data ports	
Frame	Connect to ship frame	
Ground		

Vessel power supply requirement

Connect to the ship's power source, ideally an uninterrupted power supply (UPS), through a 2-pole switched fused supply to allow isolation for servicing. Power requirement is typical 24V DC (2 A minimum) or 12V DC (4 A minimum). Required conductor area, cable length 0-10 m is 1.5 mm2 ø minimum.

M6 will turn on and start operating as soon as the DC power is applied. Use the remote isolation switch if it's required to turn off the M6.

Note: The Class A power supply requirement should comply with IMO guidelines for the class of vessel concerned. National authorities and classification societies may have their own power supply requirements; these should also be considered.

Note: Some boats require frame ground connection of all electronic devices on the ship frame.

2.8 External Connectors (Junction Box)

Baud rate support: 115200, 57600, 38400, 19200, 14400, 9600, 4800.

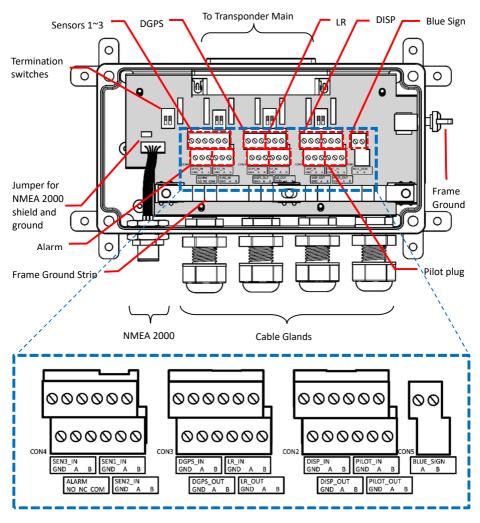


Figure 9 External Connectors (Junction Box)

CONNECTOR	LABEL NAME	DESCRIPTION	FUNCTION USAGE
	GND	Ground	Connect to data sources
Sensor 1 *1)	SEN1_IN A	Sensor 1 input A	such as heading, gyro, or
	SEN1_IN B	Sensor 1 input B	other type of sensors.
	GND	Ground	Connect to data sources
Sensor 2 *1)	SEN2_IN A	Sensor 2 input A	such as heading, gyro, or
	SEN2_IN B	Sensor 2 input B	other type of sensors.
	SEN3_IN GND	Ground	Connect to data sources
Sensor 3 *1)	SEN3_IN A	Sensor 3 input A	such as heading, gyro, or
	SEN3_IN B	Sensor 3 input B	other type of sensors.
	GND	Ground	Pilot plug port
	PILOT_IN A	Input A	
Pilot Plug *2)	PILOT_IN B	Input B	
Pilot Plug	GND	Ground	
	PILOT_OUT A	Output A	
	PILOT_OUT B	Output B	
	ALARM NO	Alarm normally	
	ALAMVI NO	open	
Alarm	ALARM NC	Alarm normally	
		close	
	ALARM COM	Alarm common	
***	GND	Ground	DGPS sensor
DGPS Input *2)	DGPS_IN A	DGPS input A	
	DGPS_IN B	DGPS input B	
DGPS	GND	Ground	DGPS sensor
Output *2)	DGPS_OUT A	DGPS output A	
Catput	DGPS_OUT B	DGPS output B	
*21	GND	Ground	Long range input
LR Input *2)	LR_IN A	LR input A	
	LR_IN B	LR input B	
	GND	Ground	Long range output
LR Output *2)	LR_ OUT A	LR output A	
	LR_ OUT B	LR output B	
Display *2)	GND	Ground	Connect to the data output
	DISP_IN A	DISP input A	of an external display
	DISP_IN B	DISP input B	system such as ECDIS.
	GND	Ground	Connect to the data input of
	DISP_OUT A	DISP output A	an external display system
	DISP_OUT B	DISP output B	such as ECDIS.
Blue Sign	BLUE_SIGN A		Connect to a blue sign
Dide Sign	BLUE_SIGN B		switch.

NOTES:

- *1) The default baud rate is 4800.
- *2) The default baud rate is 38400.

3) Suitable electric wire gauge (single wire) for installing Junction Box: AWG 26 $^{\sim}$ 16 See diagram below.

ITEM	USAGE	
	The switches provide line termination configuration.	
Termination Switches	Termination Termination ON 1 2 1 2	
Jumper for NMEA	The jumper's purpose is to wire together NMEA 2000	
2000 shield and	cable's shield and ground. Depending on your scenario,	
ground	you may choose not to connect them together.	

2.9 Connecting Extension Cable

Use the 37-pin- extension cable (1.8 m) provided in the package connect M6 to the junction box.

Note: The side of extension cable with a core should be connected close to the M6 main unit.

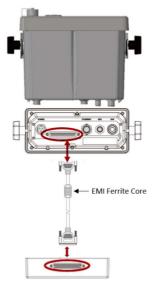


Figure 10 Connecting M6 with Junction Box

2.10 Connecting to Power Supply

The M6 requires a switched 12V or 24V DC power supply (9.6 to 31.2V operation range) capable of supplying 4A peak current. The red wire and the black wire on the 3-pin cable are used to connect the power supply's positive and negative terminals. A switched 4 Amp fuse or circuit breaker must be used in the connection between the power supply and the unit.

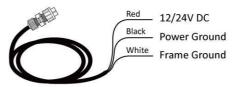
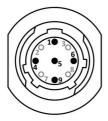


Figure 11 M6 Power Connection



M6 will turn on and start operating as soon as the DC power is applied. Use the remote isolation switch if it's required to turn off the M6.

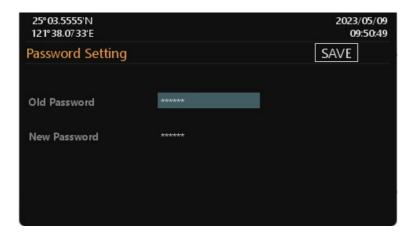
2.11 Pilot Plug Connection

The M6 has an integrated pilot plug on the front panel with the IMO standard AMP connector. Open the waterproof lid to connect the PPU (Personal Pilot Unit). When needed, an optional pilot plug is available for purchase to be connected through the junction box.

It is recommended to keep the pilot plug lid closed when not in use.

Pilot plug	Signal Type
Pin 9	RS-422 GND
Pin 1	RS-422 TX-A
Pin 5	RS-422 RX-A
Pin 4	RS-422 TX-B
Pin 6	RS-422 RX-B

2.12 Password Setting


This submenu enables change of the default operator password. Certain important settings stored within the transponder can only be changed using the operator password.

The Password is required for the access of the following chapters:

- Own ship contains information about MMSI, vessel name, IMO, call sign and dimension.
- Long Range Settings -
- Long Range Broadcast -
- Transceiver enables the option to activate/deactivate AIS transmission
- I/O Port Settings about baud rate configuration of sensors

Default password: "000000"

Use direction keys to select **Old Password**, **New Password** and then press to enter value. To save the settings, press SAVE button in the view and the system will ask whether the changes should be saved. Select YES to save or NO to discard and return to System Configuration submenu.

3 PRODUCT SPECIFICATIONS

3.1 Applicable Standards

IEC 61993-2 Ed.3.0, 2018	IMO Resolution A.694(17)
IEC 61108-1 Ed.2.0, 2003	IMO Resolution MSC.74(69) Annex 3
IEC 60945 Ed.4.0, 2002 incl. Corr. 1, 2008	IMO Resolution MSC.191(79)
IEC 61162-1 Ed.5.0, 2016	IMO Resolution MSC.302(87)
IEC 61162-2 Ed.1.0, 1998	ITU-R M.1371-5 (Class A), 2014
IEC 61162-450 Ed.2.0, 2018	IEC 62288 Ed.3.0, 2021
IEC 62923-1 Ed. 1.0, 2018	IEC 62923-2 Ed. 1.0, 2018
CESNI Inland AIS test standard Ed. 2021/3.0	

3.2 VHF Transceiver

Frequency Range	156.025 MHz ~ 162.025 MHz
Channel Bandwidth	25 KHz
Modulation	GMSK / FM
Data Rate	9,600 bps
Number of AIS Transmitter	1
Number of AIS Receiver	2
Number of DSC Receiver	1
AIS Channel 1	CH 87B (161.975 MHz)
AIS Channel 2	CH 88B (162.025 MHz)
Tx Power Output	1/12.5 Watt (30/41 dBm ± 1.5 dB)
Rx Sensitivity	< -110 dBm @ 20% PER

3.3 DSC Receiver

Frequency	156.525 MHz
Modulation	FSK

Channel Bandwidth	25К
Sensitivity	< -112 dBm @ BER < 10 ⁻²
Spurious Response Rejection	\geq 70 dB for signal @ -104 dBm; BER \leq 1 %
Blocking	\geqq 84 dB for signal @ -104 dBm; BER \leqq 1 %

3.4 GNSS Receiver (Internal)

Receiver type	72-channel; GPS, GLONASS, BeiDou, Galileo, SBAS: WASS, EGNOS, MSAS, GAGAN
Accuracy	Position: 2.5m CEP SBAS: 2.0m CEP
Sensitivity	Default mode: GPS & GLONASS Tracking & Navigation: -164 dBm Reacquisition: -160 dBm

3.5 Power Supply

Supply Voltage	12V / 24V DC
Supply Voltage Range	9.6V DC ~ 31.2V DC
Peak Current Draw	3.60A @ 12V DC; 1.72A @ 24V DC

3.6 LCD Display

Screen Size	4.3" color TFT
Pixel Number (Resolution)	480x272
Dimmer Control	Change brightness manually or automatically
Nominal viewing distance	52 cm

3.7 Keypad

	Function, ESC, Voyage/SRM, MENU, Screen
11 Keypads with Back-light	Brightness,
	DISP, Enter, Arrow Keys

3.8 Connection Interface

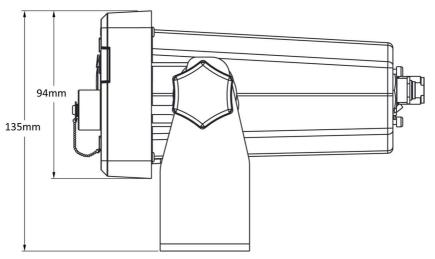
M6 Main Unit Front Panel:		
USB	Mini type B USB interface	
SD Card Slot	MicroSD type, support for exFAT and FAT32	
Pilot Plug	Std. Sex 206486-2	
M6 Main Unit Rear Panel:		
Power Connector	Round type, 3 pins	
GPS Antenna Connector	TNC (Female)	
VHF Antenna Connector	SO-239 (Female)	
Ethernet	Compliance with IEEE 802.3u, 10Base-T/100Base-TX	
DATA	37-pins, connect to Junction Box via extension cable	
Junction Box Connectors:	* Baud rate support: 38400 (default), 9600, 4800.]	
Sensor Interfaces 1 to 3 *	IEC 61162-1 or -2	
Pilot / Auxiliary *	IEC 61162-2	
External Display *	IEC 61162-2	
Long Range *	IEC 61162-2	
DGNSS correction input *	RTCM-SC-104	
Alarm Relay	Normally close	
NMEA 2000	IEC61162-3	
Alarm Output	Relay contact	
Blue sign switch	Connect to external Blue sign switch	

3.9 Environmental

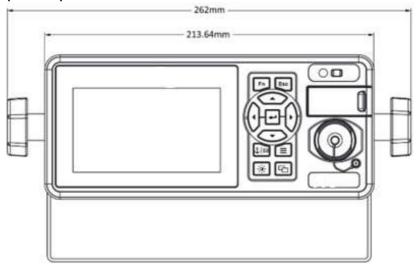
Operating Conditions	IEC 60945 "protected" category	
Operating Temperature	-25 °C ~ +55 °C	
Operating Humidity	93% RH at 40 °C	
Waterproof	IP54	

3.10 Physical

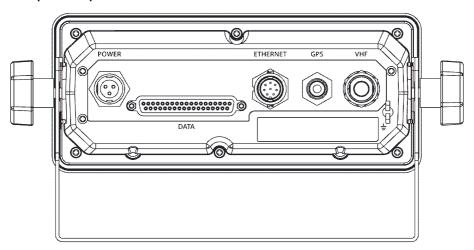
Width	262 mm (10.32 inch)
Height	135 mm (5.32 inch)
Depth (include connectors)	197 mm (7.76 inch)
Weight (main unit)	1.25 kg

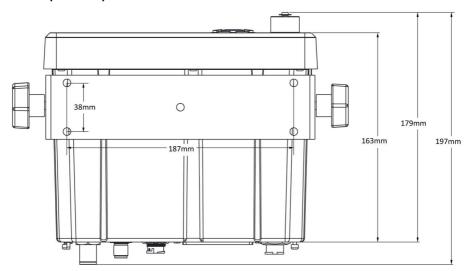

3.11 Pilot Plug (optional)

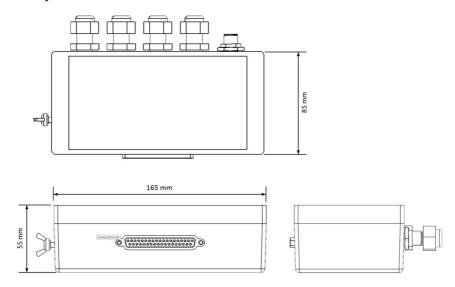
Cable length	2 m
Connector type	Std. Sex 206486-2

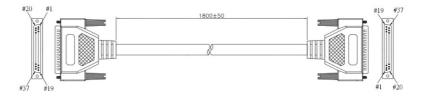

4 MECHANICAL DIMENSIONS

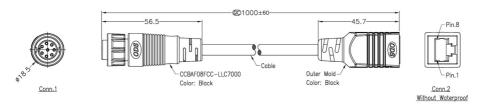
4.1 M6 Transponder Main Unit

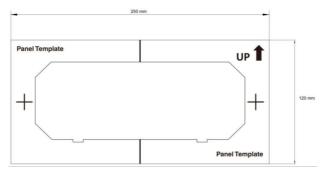

Front (size: mm)

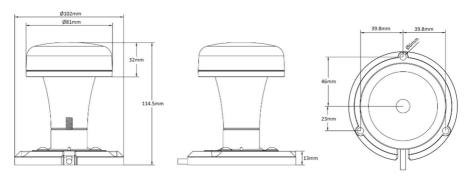

Side (size: mm)

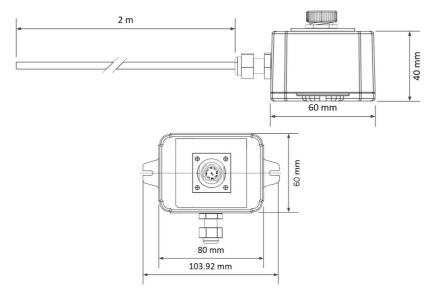

Back (size: mm)


Bottom (size: mm)


4.2 Junction Box


4.3 Extension Cable


4.4 Ethernet Cable


4.5 Mounting Template (not to scale)

4.6 GNSS (GPS) Antenna GA-25

4.7 Pilot Plug socket box (optional)

5 TROUBLESHOOTING

Use the following guide to perform simple troubleshooting in case the transponder does not function as it is expected. Due to the complexity of the operation environment of marine electronics, it is recommended to minimize all possible interference sources before proceeding with the troubleshooting by

- Disconnecting other NMEA equipment from the AIS transponder such as ECDIS, heading or gyro etc.
- Switching off other emission sources such as radar or VHF radio.

	Possible cause and remedy	
Symptom		
The transponder will not power on	 Check that the voltage of the power supply has 12V or 24V. Check that the polarity is not switched. Check that the available current is sufficient for start-up. Check that the power connector is correctly connected and secured. Increase Dimmer level of the display. 	
No GPS position fix	 Check for failed GPS antenna, damaged antenna cable and connectors When the transponder's internal GPS does not have a position fix, the time and date appearing in the upper right corner of the display will not be correct. Check the GNSS status to see the received satellites and their noise ratio. 	
No AIS transmission	 Make sure that MMSI number is correctly configured. Make sure that silent mode is switched off. Check that the available current is sufficient for transmission. Check if the transponder might be operating in a regional area set with different operating mode. 	
AIS range seems too low	 Check VHF antenna and cable installation Make sure the transponder is not operating in low power (1W) mode. 	
No AIS targets on radar view and target list	Check if VHF antenna, cabling and connector installations are damaged.	
Sensor or Data ports not response	 Check that wiring polarity is not switched Check that the transponder and the connected sensor have the same baud rate 	

5.1 Troubleshooting with alarm messages

The M6 is monitoring itself constantly for failures or other important parameters with the built-in integrity test (BIIT). In case an abnormal operation is detected in one or more of the following conditions, an alert will be triggered and displayed on the screen, and the transponder will react as described in the following table.

Description text	BIIT ID	Reaction of the system (transponder)
AIS: Tx malfunction	001	Stop
The M6 has a built-in lock detector (high active) to		transmission
monitor the local oscillator (PLL circuit) of the		
transmitter. If the operation of PLL circuit becomes		
abnormal, a logic low (Tx malfunction) will be sent from		
the lock detector to notify the system. At the same time,		
system will output an BIIT ID 001 alert at the related PI		
AIS: Antenna VSWR exceeds limit	002	Continue
	002	
The M6 has a built-in RF output power detector to monitor the VSWR (Voltage Standing Wave Ratio) of the		operation
VHF antenna port. If the antenna VSWR exceeds a given		
limit, an alarm will be generated. If the VSWR goes		
below the defined threshold, the alarm is cleared.		
AIS: Rx channel 1 malfunction	003	Stop
The M6 has 3 built-in lock detectors (high active) to	003	transmission on
monitor each local oscillator (PLL circuit) of receiver		affected
channel 1, channel 2, and channel 70 respectively. If the		channel
operation of PLL circuit becomes abnormal, a logic low		
level will be sent from the lock detector to notify the		
system. At the same time, the system will output BIIT ID		
003, BIIT ID 004 or BIIT ID 005 alert to indicate the CH1		
or CH2 or CH70 RX malfunction respectively.		
AIS: Rx channel 2 malfunction	004	Stop
		transmission on
		affected
		channel
AIS: Rx channel 70 malfunction	005	Continue
		operation
AIS: general failure	006	Stop
		transmission
AIS: UTC sync invalid	007	Continue

7		
This alarm is triggered when the transponder lost UTC direct synchronization or cannot synchronize from the internal GPS receiver.		operation using indirect or semaphore synchronization
AIS: MKD connection lost	800	Continue
This alarm is active if the communication between the		operation
control unit and the display in the transponder does not		•
work.		
AIS: internal / external GNSS position mismatch	009	Continue
This alarm is active if the difference between the		operation
internal and external GNSS position is more than 100m		
for more than 1 hour.		
AIS: NavStatus incorrect	010	Continue
For example, if the navigational status is set to "At		operation
Anchor" but the ship is moving faster than 3 knots, this		
alarm will become active.		
Heading sensor offset	011	Continue
This alarm is active when SOG is greater than 5kn and		operation
the difference between COG and HDT is greater than 45°		•
for 5 min.		
AIS: active AIS SART	014	Continue
This alarm is active when the transponder receives an		operation
AIS SART position report.		
AIS: external EPFS lost	025	Continue
This alarm is active if the position from the external		operation
Electronic Position Fixing System is invalid.		
AIS: no sensor position in use	026	Continue
This alarm is active if there is no valid position from any		operation
sensor is available.		
AIS: no valid SOG information	029	Continue
This alarm is active if the transponder does not have a		operation using
valid SOG from any sensor		default data
AIS: no valid COG information	030	Continue
This alarm is active if the transponder does not have a		operation using
valid COG from any sensor		default data
AIS: Heading lost/invalid	032	Continue
This alarm is active if either the heading info from		operation using
external sensor is lost or if the heading is undefined.		default data
AIS: no valid ROT information	035	Continue
This alarm is active if ROT is undefined or if no valid ROT		operation using
info is available.		default data

Appendix A: Technical Information - Data Interface

A.1 AIS Interface Overview

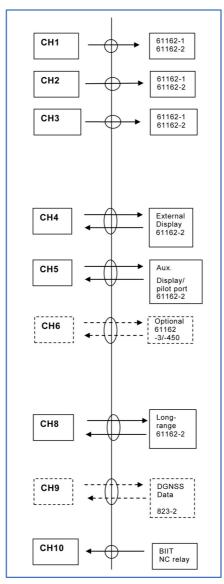


Figure A1 AIS Interface Overview

A.2 M6 Data Interface (IEC 61162-2)

The M6 Class A AIS Transponder provides 2 types of IEC 61162-2 data interfaces for user applications. The first interface type includes 3 input-only sensor data ports and the second interface type includes 4 bidirectional input/output ports. Data port for each interface type will be described in the following section.

A.2.1 Sensor Data Input Ports

The schematic of input-only sensor data port is shown in Figure A1. The schematic includes an isolated half duplex RS-485 transceiver IC which is used as the main component to receive external data. The transceiver IC is isolated from external input. To avoid signal reflection, the transceiver IC has an optional built-in 120Ω loop termination, which is selectable by the dip-switch on the junction box and the switch should be set to on position when connecting external data source with long cable. All sensor data-input ports are isolated from one another and are also isolated from internal power supply. The input impedance on A/B wires is greater than $12K\Omega$ and the levels on the A/B wires are defined in the following:

■ Logic low input: A-B < -0.2V

■ Logic high input: A-B > -0.02V

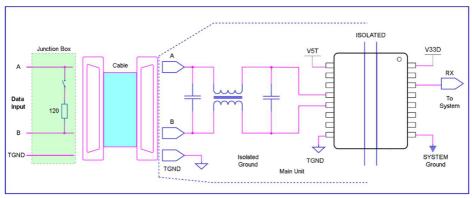


Figure A2 Schematic of sensor data input port.

A.2.2 Bidirectional Data Ports

The schematic of bidirectional data port is shown in Figure A2. The schematics includes an isolated full duplex RS-485 transceiver IC which is used as the main component to handle both data input and output from external data source. The transceiver IC is isolated from external input. To avoid signal reflection, the transceiver IC has an optional built-in 120Ω loop termination, which is selectable by the dip-switch on the junction box and the switch should be set to on position when connecting external data source with long cable. All bidirectional data ports are isolated from one another and are also isolated from internal power supply. The transceiver internal power supply is fully isolated from the external power supply.

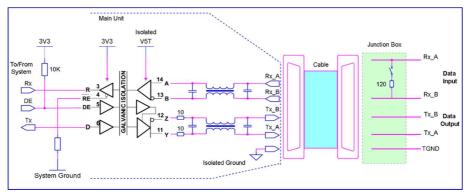


Figure A3 Schematic of bidirectional data port.

The output driver capability of bidirectional data port can provide a maximum of 60mA, and the minimum differential output swing under 10Ω load can be 2.3V.

A.2.3 A and B Signal Lines

Refer to sections A.1.1 and A.1.2.

A.2.4 Output Driver

The output driver capability of bi-direction data port can provide maximum 60mA, and the minimum differential output swing under 100Ω load can be 2.3V.

A.2.5 Input Load

Refer to sections A.1.1 and A.1.2.

A.2.6 Hardware Input/Output Circuit

Refer to sections A.1.1 and A.1.2.

A.3 Supported IEC 61162 Data Sentences

Data Port	Input Sentences	Output Sentences
Sensor 1 Sensor 2 Sensor 3 DGPS	DTM, GBS, GGA, GLL, GNS, GSA, GSV, HDT, RMC, ROT, THS, VBW, VHW, VTG	N/A
External Display Pilot	ABM, ACA, ACN, ACK, AIQ, AIR, BBM, EPV, LRF, LRI, SSA, SSD, VSD	ABK, ACA, ACS, ALC, ALF, ALR, ARC, LR1, LR2, LR3, LRF, NAK, TXT, VDM, VDO, VER For query(AIQ): ACA, EPV, SSD, TRL, TXT, VER, VSD
Long Range	LRF, LRI	LR1, LR2, LR3, LRF

Sentence Output Interval:

Sentence	Interval
VDO	Once a second
ALR, ALC, ALF (active)	Once every thirty seconds
ALR (inactive)	Once every sixty seconds

A.4 Interpretation of Input Sentences

A.4.1 ABM – AIS Addressed Binary and Safety Related Message

This sentence supports ITU-R M.1371 Messages 6, 12, 25, 26 and provides an external application with a means to exchange data via an AIS transponder.

!ABM,x,x,xxxxxxxxxxx,x,xx,s—s,x*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	v	Total number of sentences needed to transfer	
1 x	X	the message	
2	х	Sentence number	
3	х	Sequential message identifier	
4	XXXXXXX	The MMSI of the destination AIS unit for the	
4	XX	ITU-R M.1371 message	
5	Х	AIS channel for broadcast of the radio	

		message	
6	XX	ITU-R M.1371 message ID	
7	s—s	Encapsulated data	
8	Х	Number of fill-bits	

A.4.2 ACA – AIS Channel Assignment Message

An AIS device can receive regional channel management information.

\$ ACA,x,IIII.II CR> <lf></lf>	,а,ууууу,уу,а,І	III.II,a,yyyyy,yy,a,x,xxxx,x,xxxx,x,x,x,a,x,hhmr	mss.ss*hh<
Field No.	Format	Description	Remark
1	Х	Sequence Number	
2	IIII.II,a	Region northeast corner latitude – N/S	
3	ууууу.уу,а	Region northeast corner longitude – E/W	
4	IIII.II,a	Region southwest corner latitude – N/S	
5	ууууу.уу,а	Region southwest corner longitude – E/W	
6	Х	Transition zone size	
7	XXXX	Channel A	
8	Х	Channel A bandwidth	
9	XXXX	Channel B	
10	Х	Channel B bandwidth	
11	Х	Tx/Rx mode control	
12	Х	Power level control	
13	а	Information source	
14	Х	In-use flag	
15	hhmmss.ss	Time of "in use" change	

A.4.3 ACK – Acknowledge Alarm

This sentence is used to acknowledge an alarm condition reported by a device.

\$ACK,xxx*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	XXX	Unique alarm number (identifier) at alarm source	

A.4.4 AIQ - Query Sentence

This sentence is used to inquire AIS sentence information.

\$AIQ,c—c*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	с—с	Support query sentence of ACA, EPV, SSD, TRL, TXT, VER, VSD	

A.4.5 AIR – AIS Interrogation Request

This sentence supports ITU-R M.1371 messages 15 and 10. It provides an external application with the means to initiate requests for specific ITU-R M.1371 messages from AIS unit.

\$AIR,xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx			
Field No.	Format	Description	Remark
1	xxxxxxxx x	MMSI of interrogated station 1	
2	x.x	ITU-R M.1371 message requested from station-1	
3	х	Message sub-section	ignored
4	x.x	Number of second message requested from station-1	
5	Х	Message sub-section	ignored
6	xxxxxxxx x	MMSI of interrogated station-2	
7	x.x	Number of messages requested from station-	
8	Х	Message sub-section	ignored

A.4.6 BBM – AIS Broadcast Binary Message

This sentence supports generation of ITU-R M.1371 binary messages 8, 14, 25, and 26. This provides the application with a means to broadcast data, as defined by the application only.

!BBM,x,x,x,x.x,s—s,x*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	x	Total number of sentences needed to transfer the message	
2	х	Sentence number	
3	х	Sequential message identifier	
4	x	AIS channel for broadcast of the radio message	
5	x.x	ITU-R M.1371 Message ID	
6	s—s	Encapsulated data	
7	х	Number of fill-bits	

A.4.7 **DTM – Datum Reference**

Local geodetic datum and datum offsets from a reference datum.

\$DTM,ccc,a,x.x,a,x.x,a, x.x,ccc*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	ссс	Local datum	
2	а	Local datum subdivision code	ignored
3	x.x, a	Lat offset, min, N/S	ignored
4	x.x, a	Lon offset, min, E/W	ignored
5	x.x	Altitude offset, m	ignored
6	ссс	Reference datum	

A.4.8 **EPV – Command or Report Equipment Property Value**

\$EPV,a,cc,cc,x.x,cc*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	a	Sentence status flag	
2	сс	Destination equipment type	
3	CC	Unique identifier	
4	x.x	Property identifier	
5	CC	Value of property to be set	

A.4.9 GBS – GNSS Satellite Fault Detection

This sentence is used to support receiver autonomous integrity monitoring (RAIM).

\$GBS, hhmmss.ss, x.x, x.x, x.x, x.x, x.x, x.x, *hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	hhmmss.ss	UTC time of the GGA or GNS fix associated with this sentence	
2	x.x	Expected error in latitude	
3	X.X	Expected error in longitude	
4	x.x	Expected error in altitude	ignored
5	xx	ID number of most likely failed satellite	ignored
6	x.x	Probability of missed detection for most likely failed satellite	ignored
7	x.x	Estimate of bias on most likely failed satellite	ignored
8	x.x	Standard deviation of bias estimate	ignored

A.4.10 GGA – Global positioning system (GPS) fix data

Time, position and fix-related data for a GPS receiver.

\$GGA, hhmmss.ss, IIII.II, a, yyyyy.yy, a, x, xx, x.x, x.x, M, x.x, M, x.x, xxxx*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	hhmmss.ss	UTC of position	
2	IIII.II,a	Latitude N/S	
3	ууууу.уу,а	Longitude E/W	
4	х	GPS quality indicator	ignored
5	xx	Number of satellites in use, 00-12, may be different from the number in view	ignored
6	x.x	Horizontal dilution of precision	ignored
7	x.x	Antenna altitude above/below mean sea level (geoid)	ignored
8	М	Units of antenna altitude, m	ignored
9	x.x	Geoidal separation	ignored
10	М	Units of geoidal separation,m	ignored
11	X.X	Age of differential GPS data	ignored
12	xxxx	Differential reference station ID, 0000-1023	ignored

A.4.11 GLL – Geographic Position – Latitude/Longitude

Latitude and longitude of vessel position, time of position fix and status.

\$GLL, IIII.II, a, yyyyy.yy, a, hhmmss.ss, A, a *hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	IIII.II, a	Latitude, N/S		
2	ууууу.уу, а	Longitude, E/W		
3	hhmmss.ss	UTC of position		
4	А	Status, A=data valid V=data invalid		
5	a	Mode indicator		

A.4.12 GNS - GNSS Fix Data

Fix data for single or combined satellite navigation systems (GNSS). This sentence provides fix data for GPS, GLONASS, possible future satellite systems and systems combining these.

\$ GNS, hhmmss.ss, llll.ll, a, yyyyy.yy, a, cc,xx,x.x,x.x,x.x,x.x,x.x,a *hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	hhmmss.ss	UTC of position	
2	IIII.II, a	Latitude, N/S	
3	ууууу.уу, а	Longitude, E/W	
4	CC	Mode indicator	
5	XX	Total number of satellites in use	ignored
6	x.x	HDOP	ignored
7	x.x	Antenna altitude, m, re:mean-sea-level (geoid)	ignored
8	X.X	Geoidal separation, m	ignored
9	X.X	Age of differential data	ignored
10	X.X	Differential reference station ID	ignored
11	а	Nacigational status indicator	

A.4.13 GSA – GNSS DOP and Active Satellites

GNSS receiver operating mode, satellites used in the navigation solution reported by the GGA or GNS sentences, and DOP values. If only GPS, GLONASS, etc. are used for the reported position solution, the talker ID is GP, GL, etc. and the DOP values pertain to the individual system.

\$GSA, a, x, xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx			
Field No.	Format	Description	Remark
1	a	Mode: M = manual, forced to operate in 2D or 3D mode A = automatic, allowed to automatically switch 2D/3D	
2	Х	Mode: 1 = fix not available, 2 = 2D, 3 = 3D	

3	xx,xx,xx,xx, xx,xx,xx,xx, xx,xx,xx,xx	ID numbers of satellites used in solution	
4	x.x	PDOP	
5	x.x	HDOP	
6	x.x	VDOP	

A.4.14 HDT – Heading True

Actual vessel heading in degrees true produced by any device or system producing true heading.

\$HDT, x.x, T*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	x.x, T	Heading, degrees true	

A.4.15 LRF – AIS Long-Range Function

This sentence is used in both long-range interrogation requests and long-range interrogation replies. The LRF-sentence is the second sentence of the long-range interrogation request pair, LRI and LRF (see the LRI-sentence).

\$LRF,x,xx	\$LRF,x,xxxxxxxxx,c—c,c—c,c—c*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark	
1	Х	Sequence number		
2	XXXXXXXX	MMSI of requestor		
3	c—c	Name of requestor		
4	c—c	Function request		
5	c—c	Function reply status		

A.4.16 LRI – AIS Long-Range Interrogation

The long-range interrogation of the AIS unit is accomplished through the use of two sentences. The pair of interrogation sentence formatters, a LRI sentence followed by a LRF sentence, provides the information needed by a universal AIS unit to determine if it should construct and provide the reply sentences (LRF, LR1, LR2, and LR3).

\$LRI,x,a,xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx			
Field No.	Format	Description	Remark
1	х	Sequence number	
2	a	Control flag	
3	xxxxxxxx	MMSI of requestor	
4	xxxxxxxx	MMSI of destination	
5	IIII.II,a	Latitude – N/S	
6	ууууу.уу,а	Longitude – E/W	
7	IIII.II,a	Latitude – N/S	
8	ууууу.уу,а	Longitude – E/W	

A.4.17 RMC – Recommended Minimum Specific GNSS Data

Time, date, position, course and speed data provided by a GNSS navigation receiver.

\$RMC, hhmmss.ss, A, IIII.II,a, ууууу.уу, a, x.x, x.x, xxxxxx, x.x,a, a, a*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	hhmmss.ss	UTC of position fix	
2	Α	Status	
3	IIII.II,a	Latitude, N/S	
4	ууууу,уу, а	Longitude, E/W	
5	X.X	Speed over ground, knots	
6	X.X	Course over ground, degrees true	
7	XXXXXX	Date: dd/mm/yy	
8	x.x,a	Magnetic variation, degrees, E/W	
9	а	Mode indicator	
10	а	Navigational status	

A.4.18 ROT – Rate of Turn

Rate of turn and direction of turn.

\$ROT, x.x, A*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	x.x	Rate of turn, °/min		
2	Α	Status: A = data valid, V = data invalid		

A.4.19 SSA –Sender Signature Authentication

This sentence can be used both for authentication of sender and for authentication of untampered content. For this purpose, the sentence has to be applied before the protected sentence (for example EPV, SSD).

Other sentences shall not be interleaved between the sender signature authentication sentence and protected sentence, and the time between the SSA and the protected sentence should be limited. The sender signature authentication protected sentence pair shall be sent without unnecessary delay between sentences, and the time interval between the sentences shall not exceed 2 s. Note that any of the sentences may be lost and timed out.

\$SSA,ccc,	\$SSA,ccc,c,h—h,aa*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark	
1	ССС	The following sentence formatter that should be protected (for example EPV or SSD).		
2	С	Type of method to calculate signature: 1: MD5		
3	hh	Hexadecimal representation of the signature, for example 32 hexacodes for MD5.		

A.4.20 SSD – AIS Ship Static Data

This sentence is used to enter static parameters into a shipboard AIS unit. The parameters in this sentence support a number of the ITU-R M.1371 Messages.

\$SSD,c—c,c—c,xxx,xxx,xx,xx,c,aa*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	с—с	Ship's call sign	
2	с—с	Ship's name	
3	XXX	Pos. ref., point dist. "A,"	
4	XXX	Pos. ref., point dist. "B,"	
5	XX	Pos. ref., point dist. "C,"	
6	xx	Pos. ref., point dist. "D,"	
7	С	DTE indicator flag	
8	aa	Source identifier	

A.4.21 THS – True Heading and Status

Actual vessel heading in degrees true produced by any device or system producing true heading. This sentence includes a "mode indicator" field providing critical safety related information about the heading data, and replaces the deprecated HDT sentence.

\$THS,x.x,	\$THS,x.x,a*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark		
1	x.x	Heading, degrees true			
2	а	Mode indicator			

A.4.22 VBW - Dual Ground/Water Speed

Water-referenced and ground-referenced speed data.

\$VBW, x.x, x.x, A, x.x, x.x, A, x.x, A, x.x, A*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	X.X	Longitudinal water speed, knots	ignored
2	x.x	Transverse water speed , knots	ignored
3	А	Status : water speed, A = data valid, V = data invalid	ignored
4	X.X	Longitudinal ground speed , knots	
5	x.x	Transverse ground speed , knots	
6	А	Status , ground speed, A = data valid, V = data invalid	
7	x.x	Stern transverse water speed , knots	ignored
8	А	Status : stern water speed, A = data valid, V = data invalid	ignored
9	X.X	Stern transverse ground speed ,knots	ignored
10	А	Status : stern ground speed, A = data valid, V = data invalid	ignored

A.4.23 VHW – Water speed and heading

The compass heading to which the vessel points and the speed of the vessel relative to the water.

\$VHW, x.x, T, x.x, M, x.x, N, x.x, K*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	x.x, T	Heading, degrees true		
2	x.x, M	Heading, degrees magnetic	Ignored	
3	x.x, N	Speed, knots	Ignored	
4	x.x, K	Speed, km/h	Ignored	

A.4.24 VSD – AIS Voyage Static Data

This sentence is used to enter information about a ship's transit that remains relatively static during the voyage.

\$VSD,x.x,x.x,x.x,c—c,hhmmss.ss,xx,xx,x.x,x.x*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	x.x	Type of ship and cargo category	
2	x.x	Maximum present static draught	
3	X.X	Persons on-board	
4	с—с	Destination	
5	hhmmss.ss	Estimated UTC of arrival at destination	
6	xx	Estimated day of arrival at destination	
7	xx	Estimated month of arrival at destination	
8	x.x	Navigational status	
9	X.X	Regional application flags	

A.4.25 VTG – Course Over Ground and Ground Speed

The actual course and speed relative to the ground.

\$VTG, x.x, T, x.x, M, x.x, N, x.x, K,a*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	x.x, T	Course over ground, degrees true	
2	x.x, M	Course over ground, degrees magnetic	ignored
3	x.x, N	Speed over ground, knots	
4	x.x, K	Speed over ground, km/h	ignored
5	а	Mode indicator	

A.4.26 PAMC, DBG – Proprietary Sentences, Debug

The proprietary sentences are additional sentences only applicable to this product. Its main usage is for enabling testing mode and parameter settings.

This sentence is used for configuration. It commands unit with given parameters.

\$PAMC,C,c-c,x,x,x,x,x,x,x,x*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	С	Command : "C"	
2	C-C	Function type. For example, DBG.	
3	х	Parameter Id 1 , 0-998	
4	х	Parameter value 1 , 0- 1000000000	
5	х	Parameter Id 2 , 0-998	
6	х	Parameter value 2, 0- 1000000000	
7	х	Parameter Id 3 , 0-998	
8	х	Parameter value 3, 0- 1000000000	
9	х	Parameter Id 4 , 0-998	
10	Х	Parameter value 4, 0- 1000000000	

This sentence is used for retrieving responses.

\$PAMC,R,c-c,x,x,x,x,x,x,x,x*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	R	Response : "R"	
2	c-c	Function type. For example, DBG.	
3	x	Parameter Id 1 , 0-998	
4	x	Parameter value 1 , 0- 1000000000	
5	x	Parameter Id 2 , 0-998	
6	x	Parameter value 2, 0- 1000000000	
7	x	Parameter Id 3 , 0-998	
8	x	Parameter value 3, 0- 1000000000	
9	х	Parameter Id 4 , 0-998	
10	х	Parameter value 4, 0- 1000000000	·

A.4.27 PAMC, DSC – Proprietary Sentences, Digital selective calling

When AIS transponder receives DCS messages, this sentence is used to output DSC pattern.

\$PAMC,R,DSC,c-c*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	C-C	DSC pattern		

A.4.28 ACN – Alert command

This sentence is used for acknowledge, silence, responsibility transfer and to request repeat of alert details in case the reception process has detected, based on ALC, that ALF has been missed.

\$ACN,hhmmss.ss,aaa,x.x,x.x,c,a*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	hhmmss.ss	Time		
2	aaa	Manufacturer mnemonic code		
3	x.x	Alert Identifier		
4	X.X	Alert Instance, 1 to 999999		
5	С	Alert command, A, Q, O or S		
6	а	Sentence status flag		

A.5 Interpretation of Output Sentences

A.5.1ABK – AIS Addressed and Binary Broadcast Acknowledgement

The ABK-sentence is generated when a transaction, initiated by reception of an ABM, AIR, or BBM sentence, is completed or terminated.

\$ABK,xxxxxxxxxx,x,x.x,x*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	xxxxxxxx	MMSI of the addressed AIS unit		
2	Х	AIS channel of reception		
3	X.X	ITU-R M.1371Message ID		
4	х	Message sequence number		
5	х	Type of acknowledgement		

A.5.2 ACA – AIS Channel Assignment Message

An AIS device can receive regional channel management information

\$- ACA,x,llll.ll,a,yyyyy,a,llll.ll,a,yyyyy,yy,a,x,xxxx,x,xxxx,x,x,x,a,x,hhmmss.ss*hh <c R><lf></lf></c 				
Field No.	Format	Description	Remark	
1	x	Sequence Number		
2	IIII.II,a	Region northeast corner latitude – N/S		
3	ууууу.уу,а	Region northeast corner longitude – E/W		
4	IIII.II,a	Region southwest corner latitude – N/S		
5	ууууу.уу,а	Region southwest corner longitude – E/W		
6	x	Transition zone size		
7	xxxx	Channel A		
8	x	Channel A bandwidth		
9	xxxx	Channel B		
10	x	Channel B bandwidth		
11	x	Tx/Rx mode control		
12	x	Power level control		
13	а	Information source		
14	x	In-use flag		
15	hhmmss.ss	Time of "in use" change		

A.5.3 ALR – Set Alarm State

Local alarm condition and status. This sentence is used to report an alarm condition on a device and its current state of acknowledgement.

\$ALR,hhmmss.ss,xxx,A, A,cc*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	hhmmss.ss	Time of alarm condition change, UTC	
2	xxx	Unique alarm number (identifier) at alarm	
		source	
3	Α	Alarm condition,	
3		A = threshold exceeded, V = not exceeded	
4	А	Alarm's acknowledge state,	
		A = acknowledged, V = unacknowledged	
5	CC	Alarm's description text	

A.5.4 EPV – Command or Report Equipment Property Value

\$EPV,a,cc,cc,x.x,cc*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	а	Sentence status flag		
2	сс	Destination equipment type		
3	CC	Unique identifier		
4	x.x	Property identifier		
5	CC	Value of property to be set		

A.5.5 LR1 – AIS Long-Range Reply Sentence 1

The LR1 sentence identifies the destination for the reply and contains the information items requested by the "A" function identification character (see the LRF sentence).

\$LR1,x,xxxxxxxxxx,xxxxxxxxx,c—c,c—c,xxxxxxxx			
Field No.	Format	Description	Remark
1	х	Sequence number	
2	xxxxxxxx	MMSI of responder	
3	xxxxxxxx	MMSI of requestor	
4	с—с	Ship's name, 1 to 20 characters	
5	с—с	Call sign, 1 to 7 characters	
6	xxxxxxxx	IMO number, 9-digit number	

A.5.6 LR2 – AIS Long-Range Reply Sentence 2

The LR2-sentence contains the information items requested by the "B, C, E and F" function identification characters, (see the LRF sentence)

\$ LR2,x,xxxxxxxxxxxxxxxxxxx,hhmmss.ss,llll.ll,a,yyyyy,yy,a,x.x,T,x.x,N*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	х	Sequence number		
2	XXXXXXXX	MMSI of responder		
3	XXXXXXX	Date: ddmmyyyy, 8 digits		
4	hhmmss.ss	UTC time of position		
5	IIII.II,a	Latitude – N/S		
6	ууууу.уу,а	Longitude, E/W		
7	x.x,T	Course over ground, degrees, true		
8	x.x,N	Speed over ground, knots		

A.5.7 LR3 – AIS Long-Range Reply Sentence 3

The LR3 sentence contains the information items requested by the "I, O, P, U and W" function identification character (see the LRF sentence).

\$LR3,x,xxxxxxxxxx,c—c,xxxxxxx,hhmmss.ss,x.x,x.x,x.x,x.x,x.x,x.x,*hh <cr><lf></lf></cr>			
Field No.	Format	Description	Remark
1	Х	Sequence number	
2	xxxxxxxx	MMSI of responder	
3	с—с	Voyage destination, 1 to 20 chars	
4	xxxxxx	ETA date: ddmmyy	
5	hhmmss.ss	ETA time	
6	X.X	Draught	
7	X.X	Ship/cargo	
8	X.X	Ship length	
9	x.x	Ship breadth	
10	x.x	Ship type	
11	X.X	Persons, 0 to 8191	

A.5.8 LRF – AIS Long-Range Function

This sentence is used in both long-range interrogation requests and long-range interrogation replies. The LRF-sentence is the second sentence of the long-range interrogation request pair, LRI and LRF (see the LRI-sentence).

\$LRF,x,xxxxxxxxxx,c—c,c—c,c—c*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	Х	Sequence number		
2	xxxxxxxx	MMSI of requestor		
3	с—с	Name of requestor		
4	с—с	Function request		
5	с—с	Function reply status		

A.5.9 TRL –AIS transmitter-non-functioning log

This sentence is specific to AIS class A stations. It is intended to support the retrieval of the AIS non-functioning log information.

\$TRL,x.x,x.x,xxxxxxxx,hhmmss.ss,xxxxxxxx,hhmmss.ss,x*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	X.X	Total number of log entries		
2	X.X	Log entry number		
3	х	Sequential message identifier		
4	xxxxxxx	Switch off date		
5	hhmmss.ss	Switch off UTC time		
6	xxxxxxx	Switch on date		
7	hhmmss.ss	Switch on UTC time		
		Reason code 1 = power off;		
		2 = silent mode;		
8	X	3 = transmission switched off by		
		channel management command;		
		4 = equipment malfunction;		
		5 = invalid configuration;		

A.5.10 TXT – Text Transmission

For the transmission of short text messages. Longer text messages may be transmitted by using multiple sentences.

\$TXT,xx,xx,xx,cc*hh <cr><lf></lf></cr>				
Field No. Format Description Rema			Remark	
1	xx	Total number of sentences		
2	xx	Sentence number		
3	XX	Text identifier		
4	CC	Text message		

A.5.11 VDM – AIS VHF Data-Link Message

This sentence is used to transfer the entire contents of a received AIS message packet, as defined in ITU-R M.1371 and as received on the VHF Data Link (VDL), using the "six-bit" field type.

!VDM,x,x,x,a,s—s,x*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	х	Total number of sentences needed to transfer the message		
2	х	Sentence number		
3	х	Sequential message identifier		
4	a	AIS channel		
5	s—s	Encapsulated ITU-R M.1371 radio message		
6	Х	Number of fill-bits		

A.5.12 VDO – AIS VHF Data-Link Own-Vessel Report

This sentence is used to transfer the entire contents of an AIS unit's broadcast message packet, as defined in ITU-R M.1371 and as sent out by the AIS unit over the VHF data link (VDL) using the "six-bit" field type.

!VDO,x,x,x,a,s—s,x*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1		Total number of sentences needed to transfer		
1	Х	the message		
2	х	Sentence number		
3	х	Sequential message identifier		
4	а	AIS channel		
5	s—s	Encapsulated ITU-R M.1371 radio message		
6	х	Number of fill-bits		

A.5.13 ALC – Cyclic alert list

The purpose of this sentence is to satisfy the needs for a safe and consistent data distribution with a minimum of data traffic. Each change on an alert's data leads to an incremented Revision counter. So an alert processing device only needs to check the alert entries in the ALC messages to ensure that no ALF message has been lost.

\$ALC,xx,xx,xx,x.x,aaa,x.x,x.x,x.x,aaa,x.x,x.x			
Field No.	Format	Description	Remark
1	xx	Total number of sentences for this message, 01 to 99	
2	XX	Sentence number, 01 to 99 1	
3	XX	Sequential message identifier, 00 to 99	
4	x.x	Number of alert entries	
5	aaa	Manufacturer mnemonic code	
6	X.X	Alert identifier	
7	X.X	Alert instance (BIIT ID)	
8	X.X	Revision counter	
9		Additional Alert entries	
10	aaa,x.x,x.x,x.x	Alert entry n	·

A.5.14 ALF – Alert sentence

This sentence is used to report an alert condition and the alert state of a device. An ALF message shall be published for an alert each time the alert information in this sentence changes and on alert request

\$ALF,x,x,x,hhmmss.ss,a,a,a,aaa,x.x,x.x,x.x,x.cc*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1		Total number of ALF sentences for		
1	Х	this message, 1 to 2		
2	x	Sentence number, 1 to 2		
3	x	Sequential message identifier, 0 to 9		
4	hhmmss.ss	Time of last change		
5	a	Alert category, A, B or C		
6	a	Alert priority, E, A, W or C		
7	a	Alert state, A, S, N, O, U or V		
8	aaa	Manufacturer mnemonic code		
9	x.x	Alert identifier		
10	x.x	Alert instance (BIIT ID), 1 to 999999		
11	x.x	Revision counter, 1 to 99		
12	х	Escalation counter, 0 to 9		
13	CC	Alert text		

A.5.15 ARC – Alert command refused

This sentence is used for which it is illegal to accept acknowledge or responsibility transfer, e.g. not enough information for decision support available or the source of acknowledgement is not acceptable.

\$ARC,hhmmss.ss,aaa,x.x,x.x,c*hh <cr><lf></lf></cr>				
Field No.	Format	Description	Remark	
1	hhmmss.ss	Time		
2	aaa	Manufacturer mnemonic code		
3	x.x,	Alert identifier		
4	x.x,	Alert instance (BIIT ID), 1 to 999999		
5	С	Refused alert command, A, Q, O or S		

Appendix B: M6 NMEA 2000 PGN Information

The following table is a list of the NMEA 2000 PGNs supported by the M6 unit.

ОИТРИТ				
PGN	Description			
59392	ISO Acknowledgment			
59904	ISO Request			
60160	ISO Transport Protocol, Data Transfer			
60416	ISO Transport Protocol, Connection Management			
60928	ISO Address Claim			
126208	NMEA – Acknowledge group function			
126464	PGN List - Transmit PGN's group function			
126993	Heartbeat			
126996	Product Information			
126998	Configuration Information			
129038	AIS Class A Position Report			
129039	AIS Class B Position Report			
129040	AIS Class B Extended Position Report			
129041	AIS Aids to Navigation (AtoN) Report			
129792	AIS DGNSS Broadcast Binary Message			
129793	AIS UTC and Date Report			
129794	AIS Class A Static and Voyage Related Data			
129795	AIS Addressed Binary Message			
129797	AIS Binary Broadcast Message			
129798	AIS SAR Aircraft Position Report			
129800	AIS UTC/Date Inquiry			
129801	AIS Addressed Safety Related Message			
129802	AIS Safety Related Broadcast Message			
129803	AIS Interrogation			
129804	AIS Assignment Mode Command			
129805	AIS Data Link Management Message			
129806	AIS Channel Management			

129807	AIS Group Assignment		
129809	AIS Class B "CS" Static Data Report, Part A		
129810	AIS Class B "CS" Static Data Report, Part B		
129811	AIS Single Slot Binary Message		
129812	AIS Multi Slot Binary Message		
129813	AIS Long-Range Broadcast Message		
129816	AIS Acknowledge		

INPUT		
PGN	Description	
59392	ISO Acknowledgment	
59904	ISO Request	
60160	ISO Transport Protocol, Data Transfer	
60416	ISO Transport Protocol, Connection Management	
60928	ISO Address Claim	
65240	ISO Commanded Address	
126208	NMEA – Request group function	
	NMEA – Command group function	

Appendix C: Installation and Maintenance Record

The following installation record should be completed and retained on board the vessel for maintenance records.

Vessel Information			
Vessel Name		Flag State	
IMO Number		MMSI Number	
Owner/Company		Radio call sign	
Type of vessel		Gross tonnage	
Length	m	Beam	m

AIS Class A Transponder Information				
Transponder S/N		Pilot Plug S/N		
Junction Box S/N		GPS Ant. S/N		
Password				
Power supply	Voltage:	Voltage: Maximum output current:		
	V	V A		
Note				

GPS/GNSS Antenna Location			
A= Distance to Bow	m	C= Dist. To Port-Side	m
B= Distance to Stern	m	D= Dist. To Starboard	m
A B			

Connected Sensors and Devices			
Connected Port	Equipment	Model Number	
Sensor 1			
Sensor 2			
Sensor 3			
Ext Display Port			
Pilot Port			
Long Range Port			
DGNSS Data Port			
Other Device			

Installer Information		
Company Name		
Technician's Name		
Telephone/Mobile No.		
Address		
Place	Date	Installer's Signature

Appendix D: USCG Check List & Report

For USA vessel owners, please visit the USCG website to download the voluntary checklist to assist the surveyor or owner in ensuring the ship's Automatic Identification System (AIS) in operation is properly operating as defined in 33 CFR §164, 47 CFR §80, and, Safety of Life at Sea Convention (SOLAS) Chapter V Regulation 18.9.

The USCG AIS Checklist is posted on line here:

https://www.navcen.uscg.gov/sites/default/files/pdf/AIS/USCG_AIS_Inspection_C hecklist19 10 01.pdf

Software Revisions

The transponder is delivered with software version according to the following table which is to be filled in and maintained either by manufacturer, distributor, dealer, or installation company. When software update is done, the new software (firmware) version can be identified through MKD at MENU/DIAGNOSTICS/VERSION (please refer to section 2.9.5 in the Operator Manual). Each new software upgrade requires information recorded to reflect the change made.

Software Maintenance Record			
Software Version	Ву	Date	Change

6 DOCUMENT REVISIONS

Date	Rev/Issue	Changes
2024-02-21	1	Initial issue

NOTE:

NetWave Systems B.V.

Blauw-roodlaan 100, 2718 SJ Zoetermeer The Netherlands Phone: +31 (0)881181500

Email: info@seasofsolutions.com

 $\underline{www.seas of solutions.com}$